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How do we generate calibrated
set valued predictions?
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Naive Set Construction Procedure

- Sum all softmax probabilities till we reach the given threshold

0.5
Is this really a 95 % Confidence

0.3 Set?

Softmax
Scores

0.15 - Model probabilities are not calibrated
- For ‘hard” examples, set sizes will be very large

An illustration of the naive method. Since the softmax scores are not the true

probabilities, the pink threshold does not provide coverage.
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Generating Predictive Sets

* We want a predictive set that controls for some user defined risk function with high probability

e Distribution-Free =  {Input Data Distribution, Model } = Black Box .

e All we have to do is learn a threshold 7!

e Predictive Set: I'(X) = {y: p(y|x) > 7}

Conformal Prediction (CP)!!] Risk Controlling Prediction Sets (RCPS)!“]
FNR<a=P(Y¢T(X)) <a P(E[LY, TX)] <a)>1-6
————
Risk

[1] Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. ArXiv, abs/0706.3188.

[2] Bates, S., Angelopoulos, A., Lei, L., Malik, J., & Jordan, M.L. (2021). Distribution-Free, Risk-Controlling Prediction Sets. ]. ACM, 68, 43:1-43:34.
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Learning the Threshold for Conformal Prediction (CP)

Any Black Box Learn Threshold Apply threshold to
Model! stPY¢g1 (X)) La softmax probabilities
Training Calibration Prediction 7
Tcal Conformal Set = [1, 3]

Frequency

Conformity Scores
T(Xtest, ¥)

Ground Truth Softmax
Scores p(Y;| X))

| | |
Training & Calibration

Unseen Test Example
Validation Dataset Dataset
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Risk Controlling Prediction Sets (RCPS)

Predictive Set: I'(X)=1{y:p(y|x) >}

Any Black Box Compute Risk R(7) and Learn Threshold Apply threshold to
Model! 1 —6UCB R (7) s.t. RT(7) < a softmax probabilities

Training Calibration Prediction
Conformal Set = [1, 3]
—— Risk R(T) "
—— Risk UCB R * (1) 0
> —== Desired Risk a (o)
= Y VN
J : iz 2%
. > S :{> % :{> =R,
“I . 0 " by A SF
S
O
*
Losses L(Y;, I'(X,)) EoP
I I |
| | | | |
Training & Validation Dataset Calibration
Dataset Unseen Test Example
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CP Set Dist

Mean = 0.9499, Std = 0.0025

60
- 1-a=0095 I
|
|
|
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|
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|
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= |
|
|
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20 1 '
|
|
l
| 1.6 1.8 2.0 2.2
: risk (A)
8935 09140 9945 0950 0955 0960
Empinical Coverage Risk Distribution of RCPS over 1000
Coverage distribution of CP over calibration test SplitS. With 6 = 0.1 ,
1000 calibration-test splits there is a 10% chance of violating risk
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But what Kkind of predictive sets
should we provide human experts?

@y UNIVERSITY OF

8> CAMBRIDGE



What kind of predictive sets should we provide human experts?

Low Risk Labels A set that is small?
I High Risk Labels

{ Tumour }

A set that narrows
down diagnoses?
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L.et’s ask a more fundamental
question....
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Are prediction sets useful in
Human-Al teams in the first place?
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How Useful are Prediction Sets in Human-AI Teams?

- Are prediction sets better than point predictions?
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How Useful are Prediction Sets in Human-AI Teams?

- Are prediction sets better than point predictions? Yes!

A CP Scheme! P

d

e (CP sets are perceived to be more useful by Metric Top-1 = RAPS  pvalue Effect Size
humans / Accuracy 0.76 +0.05 0.76 005  0.999 0.000
Reported Utility 5.43 £0.69 6.94 + 0.69 1.160
Reported Confidence 7.21 £055 7.88 +029  (0.082 0.674
e Humans trust CP predictors more than Reported Trust in Model 5.87 +0s1 8.00 + 069 (< 0.00D) 1.487
Top-1 classifiers J Table 1: Top-1 vs RAPS (a = 0.1)

[3] Angelopoulos, A., Bates, S., Malik, J., & Jordan, M.I. (2021). Uncertainty Sets for Image Classifiers using Conformal Prediction. ArXiv, abs/2009.14193.
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But we can’t just provide any
predictive set!
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How Useful are Prediction Sets in Human-AI Teams?

- Can we narrow down properties of set predictions that provide value to human-Al teams?

Yes!
Metric Top-1 + Random RAPS »p value Effect Size
Accuracy 0.72 +0.05 0.76 £0.05  0.427 0.338
Reported Utility 5.01 + 0.65 6.94 + 0.69 1.432
Reported Confidence 7.29 +0.47 7.88 £0290  0.082 0.098
Reported Trust in Model 5.73 + 1.07 8.00 + 0.69 @ 1.316

Table 2: Top-1 + Random vs RAPS (a = 0.1)

= Prediction sets must accurately reflect model uncertainty
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This 1s a good start......
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but let’s improve upon this
baseline!
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Combining Learning to Defer and Set-Valued Predictions : D-CP

* We need not provide a predictive set for every

' .
example! Predict Predictive Set:
T(Xies) = 0 ['(Xie50)

e Why not leverage the best of the human and the

model’s abilities? (and provably so!)
Test Example X,
e We need to learn a deferral policy n(X) € {0,1}
alongside the classifier! Defer Expert Prediction:
(Xiesr) = 1 hX,.)

e We call this scheme D-CP
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Empirical Results on 3 CP Schemes

3 Different CP Schemes
|

Predictive Set Size of Non-Deferred Examples

Deferral Rate Team Accuracy

RAPS APS LAC
0 65.18 + 0.30 3.75 + 0.06 4.61 + 0.08 3.26 +0.03
0.1 69.95 + 0.31 2.81 +0.05 4.05 + 0.06 2.13 +0.04
0.2 72.98 +0.30 2.36 + 0.06 2.93 + 0.10 2.07 +0.03

Table 3: CIFAR-100: Synthetic Human Expert with 70 % accuracy (a = 0.1)

Deferral Rate Team Accuracy Predictive Set Size of Non-Deferred Examples

RAPS APS LAC
0 82.02+ 055 1.91 +o0.03 2.83 +0.05 2.47 + 0.03
0.1 86.53 + 0.68 1.73 + 0.08 2.56 + 0.07 1.90 + 0.04
0.2 89.43 + 0.64 1.49 + 0.06 2.13 + 013 1.51 + 0.03

Table 4: CIFAR-10H!®!: Real human annotations with 95% accuracy (o = 0.1)

e We get lower set sizes on non-
deferred examples

e Higher overall team accuracy!

e Win-Win!

[5] Peterson, Joshua C. et al. “Human Uncertainty Makes Classification More Robust.” 20719 IEEE/CVF International Conference on Computer Vision (ICCV) (2019): 9616-9625.
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Empirical Results on CIFAR-10H

Model Uncertain — Humans Confident Model Confident — Humans Uncertain

S

Model o _ Model -
Human l l | I Human . .
Class Class Class Class 4 Class Class
D-RAPS Defer Defer Defter D-RAPS {Deer} {Bird, Cat) {Airplane)
RAPS ({Airplane, Ship, Automobile}  {Horse, Dog, Cat} {Bird, Horse, Deer} RAPS {Deer, Horse} {Bird, Airplane, Cat) {Airplane, Ship}
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Human Subject Evaluation of D-CP

Human Subjects benefit from:

 Higher Perceived Utility  /

Metric D-RAPS RAPS pvalue Effect Size
° Higher Trust in Model / Accuracy. . 0.76 +0.08 0.67 +005 0.003 0.832
Reported Utility 7.93 +039 6.32 +060 < 0.001 1.138
Reported Confidence 7.31 +020 7.28 +029  (0.862 0.046
o Higher Accuracy / Reported Trust in Model 8.00 +045 6.87 +061 0.006 0.754

Table 5: D-RAPS vs RAPS: All Examples
a = 0.1, deferral rate b = 0.2, CIFAR-100

Compared to showing CP sets!
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Human Subject Evaluation of D-CP

Bias = # times human is incorrect and their prediction is in the CP set

Total Number of Examples

RAPS

Lower bias = Human experts are not as Metric _D;RAPS Non-Deferred Examples
influenced by incorrect labels found in the Bias  0.063 =+ 0.035 0.189 =+ 0.046
predictive set! Table 6: Human Subject Bias on Non-Deferred

Examples CIFAR-100
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Why stop at the model? We
can also control expert risk!
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Dual Risk Control Properties of D-CP

. . - e What if I accidentally misclassify
* By combining deferral and set prediction, we can e

also jointly control for the false negative rate of the
model and the expert! (an extension of [4])

* Define set predictor as: Model
. o
1-1 ( X) — @ n.(X) Z. A'l Defer NP 2O~
{y:p(y|x) > 4,} otherwise » Predict == o %)
. What if the individual in question
jC}t was a violent criminal?
V

e Tune 4, and 4, to control for risks using calibration { Non Violent, Vandalism, Hate speech }

dataset
Figure: Illustration of the risks we can control

[4] Angelopoulos, Anastasios Nikolas et al. “Learn then Test: Calibrating Predictive
Algorithms to Achieve Risk Control.” ArXiv abs/2110.01052 (2021): n. pag.
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Dual False Negative Rate Control

e Synthetic Expert: 80 % accurate A\.
Acceptable Misclassification Rate: a,,,,,, =

e Classifier: ~ 60 % accurate (Top-1) B.

Acceptable FNR: Aclassifier

e Tolerance 0 = 0.1
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Dual False Negative Rate Control

We simultaneously guarantee that the expert
and set predictor have risk less than 0.1 with

high probability (1 — 6 = 0.9)!
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Some Future Questions to Tackle

 How does the type of risk control impact the utility of the set?
 How does the error tolerance parameter impact the utility of the set?
e (Can we control for the risk associated with any (not necessarily ground truth) label?

e Can we design better deferral policies that can improve the CP set sizes on non-
deterred examples?
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Can we shape predictive sets according
to a human-specitied heuristic?
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Generating Similar Sets

want the smallest
possible set

I want the set to only
contain lung diseases

e Sometimes it's not feasible to obtain human
) labels to train a deferral policy

 But we can still generate usetul predictive sets
if the human provides some form of direction!

I don’t want ‘cancer’ and ‘normal’
To be predicted together
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Generating Similar Sets

¢ The human provides a label dissimilarity matrix
M where M;; = cost of predicting labels i and j

together.
{ , Apple, , Tulip}
o Define set dissimilarity 2(5) = max M, Dissimilar Set High 2(S)
1,JES
e We can construct predictive sets that reduce Z(S) Similar Set { » Apple, }
whilst providing the same risk guarantees! Low 2(5)

Both sets provide the same risk guarantees!
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A Proof of Concept with Semantically Similar Sets

7\

e Say we want sets that contain semantically {D()g, Cat, Ship } Horse
similar labels \_/
e Define a label dissimilarity cost matrix M s.t d(Horse,Dog) < d(Ship,Dog)

M;; = d(y;, ;) = |emb(y;) — emb(y)) |

e emb(y;) = Word embedding of label y; d(Horse, Cat) < d(Ship,Cat)
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Examples of Semantically Similar Sets: CIFAR-100

Acceptable Label (Minor Penalty)

- Ground Truth Label

- Undesirable Label (Major Penalty)

& = {Palm Tree, S ={ , Apple, , Tulip}
— RCPS ..............................................................................................
. D(&) = 2.445 D(&) = 2.499
Both sets provide the
same risk guarantees! § = {Palm Tree, , , , | S = { Apple, }
I 200 2 ) D T R R e PR
D(S8) = 1.001 D(S8) = 1.501

But the bottom sets have semantically similar labels!
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Label Similarity Experiments

e Define label dissimilarity penalty u

Risk y=0.05 o

e u > (0 = we obtain more similar sets 2.5 . i, ’ >
2 6.6 6.6 ’ - ZU"
5 2.40 . ) 2
. . . . N 6.4 N 6.4 © 0.0 =
e 1 < (0 = we obtain more dissimilar sets 3 5 " ; 5
A 2.35 6.2 | . <
) -0.5 ¢
6.0 6.0 003;9 90 03_’
. 2.30 o <

e But there 1S a trade()ff between label 1.0 -05 00 05 1.0 1.0 -05 00 05 1.0 230 235 240 2.45 o

Dissimilarity Penalty Dissimilarity Penalty Dissimilarity

similarity / dissimilarity and predictive
set size!
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Examples of Semantically Similar Sets: CIFAR-10

Acceptable Label (Minor Penalty)

- Ground Truth Label

- Undesirable Label (Major Penalty)

- 2

{Horse, Airplane} {Deer, , Airplane} { Airplane, Bird }
RCPS .......................................................................................
D(§8) =1.673 D(§8) = 1.689 D(§8) = 1.677
ROPS-IUID cvvvevvnrerenrananeananentateeat et aseeasaneatateteaseeasarersateaasareneanans,
D(S) = 1.651 D(S) = 1.536 D(S) =0
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Some other cool properties of D-CP uncovered

¢ Humans are negatively influenced by incorrect labels in CP sets - this effect
is less pronounced in D-CP sets!

¢ We can jointly control for the misclassification rate of the human and the
false negative rate of the model by learning two thresholds!
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Appendix
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Appendix: Dual False Negative Rate Control

-== §=0.1 Threshold === 6=0.1 Threshold

e Synthetic Expert: 80 % accurate N A 011
Acceptable Misclassification Rate: ,,,,,,, = 0.1 020-

0.10

0.15

False Negative Rate

o
-
o
1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1

e Classifier: ~ 60 % accurate (Top-1)
Acceptable FNR: @, fi0r = 0.1

Expert Misclassification Rate

0.07 ~

0.05 -~
0.06 -

0.004 0.05 -

Risk Distribution Risk Distribution

e Tolerance 0 = 0.1
[llustration of dual risk control with a synthetic expert

0 = 0.1, 1000 validation-calibration splits
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Appendix: Theoretical Results

e Theorem 1: If a deferral policy n(X) defers examples such that the risk on non-deferred examples is lower
than before (i.e. E[L(Y,I'(X))|n(X) = 0] < E[L(Y,I'(X))]), then the prediction set will contain fewer
incorrect labels on average

e Theorem 2: Given any deferral policy n(X), set-valued classifier 1 (X), and human expert h(X), we can
control for the false negative rate of the model on non-deferred examples and expert misclassification rate on
deferred examples with high probability, i.e.

PPY ETX)|2X)=0)<a)>1-35
PPhX) & Y|n(X)=1)<a)>1-6

for suitably defined a;, a,, O
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Appendix: Human Subject Evaluation of D-CP

Metric D-RAPS RAPS p value Effect Size
Accuracy 0.88 +005 0.81 £004  0.058 0.508
Reported Utility 7.93 +039 6.19 +062 < 0.001 1.211
Reported Confidence 7.78 +033 7.31 +03¢4  0.059 0.507

Table 5: D-RAPS vs RAPS: Non-Deferred Examples
o = (0.1, deferral rate b = 0.2, CIFAR-100

Metric RAPS D-RAPS N p-value Effect Size Npnin
Accuracy (All) 0.67 0.76 30 0.003 0.87 22
Accuracy (Easy) 0.87 0.83 30  0.310 0.27 218
Accuracy (Difficult) 0.55 0.67 30 < 0.001 1.04 16

Table 4.10: Accuracy of participants when shown RAPS vs D-RAPS sets on examples
stratified by difficulty. N,,;, is the minimum sample size for each group needed for p < 0.05
with power 1 — 8 = 0.8 and N is the experimental sample size of each group.




