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Abstract

In a growing number of high-stakes decision-making scenarios, experts are aided by
recommendations from machine learning (ML) models. However, predicting rare
but dangerous outcomes can prove challenging for both humans and machines. Here
we simulate a setting where ML models help law enforcement prioritise human
effort in monitoring individuals undergoing radicalisation. We discuss the utility
of set-valued predictions in guaranteeing the maximal rate at which dangerous
radicalized individuals are missed by an assisted decision-making system. We
demonstrate the trade-off between risk and the required human effort. We show
that set-valued predictions can help better allocate resources whilst controlling
the number of high-risk individuals missed. This work explores using conformal
prediction and more general risk control methods for assisting in predicting rare
and critical outcomes, and developing methods for more expert-aligned prediction
sets.

1 Introduction

In high-stakes settings, the consequences of misclassification can be disastrous, especially when
a high-risk instance is labeled as low risk. For these applications, we can not rely on automated
decision making unless our machine learning (ML) models achieve extraordinarily high performance.
As this is often not the case, in practice the decision making either remains fully human, or a ML
model is used to assist the human decision maker. Well designed human-AI teams can improve
both performance Bansal, Wu, and Zhou (2021), fairness Keswani, Lease, and Kenthapadi (2021),
and trust Bansal et al. (2020). Researchers have explored applications in content moderation Link,
Hellingrath, and Ling (2016); Jhaver et al. (2019), medical imaging, Fogliato et al. (2022); Hamid et
al. (2018), and risk assessments Green and Chen (2019). In this work, we are interested in leveraging
collaboration to archive better risk control. Specifically, we consider the challenge of predicting a
rare and dangerous label, where mis-classification can lead to serious real-world consequences. We
aim to demonstrate the potential value of incorporating a predictive model in a collaborative setting,
even if the model alone cannot predict the label of interest to a satisfactory level.

There are several non-parametric, distribution free risk controlling methods found in literature Bates
et al. (2020); Angelopoulos et al. (2021, 2022); Vovk, Gammerman, and Shafer (2005). These can
provide actionable uncertainty quantification for any black box classification model in the form of
predictive sets with theoretically guaranteed risk levels below the desired amount (e.g. false negative
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Figure 1: An illustration of the types of risk we may want to control:
A: Expert Misclassification Risk.
B: False Negative Rate.
C: Fairness with Respect to Different Groups
Lu et al. (2022) has focused on CP methods for ensuring fairer predictive sets, but they didn’t
formulate this as a risk control problem. In this paper, we focus on Risks A and B and leave
controlling for risk C for future work.

rates). Angelopoulos et al. (2021) have further developed a scheme that further extends risk control
to obtain predictive sets that can control for multiple risks. However, most such prior work and others
such as Angelopoulos et al. (2020); Romano, Sesia, and Candes (2020); Stutz et al. (2022) has relied
on the predictive quality of the model for the success of the approach and did not considered control
of multiple risks in a human-AI team. While work such as Babbar, Bhatt, and Weller (2022) has
considered the impact of prediction sets in human-AI teams, they a) only considered conformal
prediction (CP) and b) did not consider how CP (and indeed, broader risk control methods) can be
leveraged to provide guarantees on the false negative rates of the expert.

In the context of human-AI teams, we put risk controlling procedures in the context of a human expert.
Concretely, we explore risk controlling predictive sets when there is a resource constraint on the
downstream decision maker, i.e. they can only perform predictive duties / take further action on a select
few examples. In these situations, we want satisfactory guarantees on the expert’s misclassification
rate (without making assumptions on the expert’s competencies) and allocate the right examples to
the expert for further monitoring and intervention. For the human-AI team as a whole, we may also
want to control for other risks associated with the model. Some risks we may want to control are
illustrated in Figure 1.

Through our exploration of a case study involving flagging dangerous radicalised individuals for
further intervention, we argue that risk control is a multi-faceted problem that needs to be carefully
considered from the perspective of both the downstream decision maker and the automated assistant
insofar as cost sensitive classification is concerned. Despite any intrinsic limitations of the classifier
and the underlying expert, this paper serves provide reassurance to the end user that any predictive
sets output by a classifier will be useful, trustworthy, and faithfully articulate model uncertainty.

2 Use Case: Radicalization in the US

In this work, we use the following motivating example: identifying individuals undergoing a dangerous
radicalisation process. Following McFee, Jensen, and James (2019), we consider a scenario where a
law enforcement agency has limited information on a large volume of individuals, and an intervention
is required to procure additional information. This intervention (e.g. monitoring chatter) requires
resource and justification; therefore, it is critical to prioritise which individuals may pose a high
risk to society. We use the available data to build a model that predicts the extent of radical activity
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the individual in question may go on to commit. We then use the model outcomes to prioritise the
available resources on the most crucial interventions.

We build a predictive model on the Profiles of Individual Radicalization in the United States (PIRUS)
dataset McFee, Jensen, and James (2019). This public dataset contains anonymised information on
the socioeconomic background, personality, childhood, ideology, and radicalization process of 2226
individuals in the USA who have a history of extremist activities, either violent or non-violent in
nature, from 1948 to 2018. The aim of this dataset is to enable the development of methods that help
understand the process of radicalization from a scientifically rigorous perspective and help mitigate
this process in its nascent stages. Although all the information in this dataset was collected post-hoc,
we attempted to only use information that could have reasonably been available before an act of
violence was committed as input features. We combined outcome information from the dataset to
engineer a target label indicating the level of harm extracted by the individual.

Broadly speaking, the input features can be divided into 3 categories:

• Group Nature: Includes extremist group dynamics and recruitment mechanisms of the
group the individual was associated with.

• Radicalisation: Information about the extent of radicalisation and exposure of the individual
to different radicalisation material.

• Other information: Demographics, socioeconomic status, and personal information about
social relationships and prior criminal activity.

We construct the target label from information about the first publicly known extremist activity
associated with an individual. Specifically, we considered whether an individual’s violent plot was
executed according to their plan, and the resulting casualties. See Table 2 in the Appendix for details.

As we build a model to decide where to allocate resources to investigate potentially dangerous
radicals, we consider how to best facilitate cooperation between experts and the model. In spirit
of Babbar, Bhatt, and Weller (2022), we provide set-valued predictions, which capture the uncertainty
associated with a model’s outcome. We consider how experts can help shape the multiple risks for
which we control, as we may care about metrics beyond accuracy. Specifically, we can consider
learning a deferral risk, whereby the model abstains from performing prediction on individuals where
the model is uncertain. We also consider how to triage the number of deferred individuals under fixed
resources.

3 Preliminary Theoretical Background

We define a set valued prediction Γλ as a mapping from the input space X to the power set of the
label space Y , i.e. Γλ(X) : X → 2Y . In general, this would be a wrapper for a classifier mθ(x) that
provides softmax probabilities πy(x). We construct a risk controlling set predictor as:

Γλ(x) = {y : τ(x, y) ≥ λ} (1)

where τ(x, y) : X × Y → R is a non-conformity score function. This is a function that quantifies
how different example (X, y) is from previously observed data. In this paper, for all risk controlling
sets, we use the conformity score function in Sadinle, Lei, and Wasserman (2016), which is defined
as τ(x, y) = πy(X), i.e. the softmax probability associated with label y and example X .

3.1 Conformal Prediction

In Conformal Prediction (CP), we tune λ to construct sets that satisfy a desired false negative tolerance,
i.e:

P (Ytest ∈ Γλ(Xtest)) ≥ 1− α (2)
for any chosen α. A validation dataset is split into calibration and test datasets. The calibration dataset
is used to determine the largest value of λ such that Equation 2 holds.

3.2 Generalised Risk Control

The guarantees provided by CP hold in expectation and are only valid when the desired risk to be
controlled is the false negative rate. However, to express model uncertainty and provide useful sets to
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the downstream decision maker, we may want to control for a broader class of risks. Furthermore, we
may seek to limit the downside violation of such risks wherever possible (i.e. with high probability).
We now want to be able to find an appropriate threshold λ to obtain a set predictor that is guaranteed
to control for potentially multiple risks simultaneously with high probability. Bates et al. (2021)
developed a procedure called Risk Controlling Prediction Sets (RCPS) that can control for any risk
function(s) at the user-desired level, i.e.

Theorem 3.1. We can control for any risk R(λ) = E[L(Y,Γλ(X)] at a user-specified level α with
probability at least 1− δ for a user-defined loss function L(Y,Γλ(X)):

P (R(λ) ≤ α) ≥ 1− δ (3)

Proof. From Bates et al. (2020)

Using RCPS, we can generate risk controlling procedures that aim to diversify risk between the model
and the human. Concretely, we employ ideas from rejection learning found in literature Mozannar
and Sontag (2020) to enable the model to reject some examples for the expert to classify. We now
want to simultaneously ensure that the model does not perform badly on examples it needs to classify
and the expert is reasonably good on examples it receives from the model. However, we argue that
risk control should not end here - humans may want to control for a variety of other risks associated
with a prediction. In this paper, we make no limiting assumptions about the kind of risk functions
humans can provide. Rather, we aim to illustrate multiple risk control in cost sensitive scenarios,
regardless of the definition of risk. Thus, given a human h(X) and a rejector r(X) ∈ {0, 1} (where
r(X) = 1 implies deferral to h(X)), we can apply RCPS and individually control for multiple risks.

Corollary 3.1.1. We can control for the misclassification rate of the human at a chosen level and any
other risk function simultaneously with high probability, i.e.

P (P (h(X) ̸= Y |r(X) = 1) ≤ α1) ≥ 1− δ (4)

P (R(λ) = E[L(Y,Γλ(X))|r(X) = 0] ≤ α2) ≥ 1− δ (5)

for suitable α1, α2, δ

Proof. See Appendix.

In this paper, we employ the following risk functions for the trained model employed on non-deferred
examples:

False Negative Rate: (FNR) = E[IY /∈Γλ(X)|Y ∈G ] (6)

False Positive Rate: (FPR) = E[Iy∈Γλ(X)|y ̸=Y,y∈G ] (7)

where G is the set of predefined risky labels (see Appendix). A high false negative identification rate
of dangerous individuals is unquestionably disastrous. Equally, a high false positive rate can lead to
wasted utilization of resources monitoring individuals that will likely not cause social harm.

4 Human-Centric Risk Control Experiments

We perform experiments on the PIRUS dataset McFee, Jensen, and James (2019) to illustrate different
aspects of human-centric risk control. We aim to show the following:

• We can generate set predictors that simultaneously control for the marginal false negative
identification rate of more dangerous individuals (i.e. cases where an extremist assaulted
civilians with a deadly weapon) and the misclassification rate of the expert.

• We analyse the conditions under which multiple risk control is achievable. Specifically, we
compare the best risk control possible under different deferral policies.

• We then employ risk controlling predictive sets in a situation where law enforcement may
want to monitor a limited number of individuals and apply interventionist policies. In these
scenarios, we explore a few intervention methods based on predictive sets.
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Babbar, Bhatt, and Weller (2022) have recently evaluated a scheme called D-CP, where they learn
a set predictor that defers some examples to an expert and and provides calibrated predictions on
non-deferred examples. We extend this scheme now in order to provide statistical guarantees on the
expert’s misclassification rate.

We first generate 4 synthetic experts with the following characteristics:

• If the true label is not dangerous, the expert randomly assigns any label to the example.

• If the true label is dangerous, i.e. is either 5, 6, or 7, the expert can classify the label with the
following accuracies – Expert A: 95%, Expert B: 90%, Expert C: 80%, and Expert D: 70%

We now want a suitable deferral policy such that we defer a non-zero number of examples to such
an expert whilst ensuring that the expert is right 1− γ1 proportion of the time, on future examples,
with high probability. Moreover, whenever the true label is dangerous and we don’t defer, we also
want the set to contain the label 1− γ2 proportion of the time. To this end, given an expert h(X), we
define the set predictor

Γλ(X) =

{
∅ r(X) ≥ λ1

{y : τ(X, y) ≥ λ2} otherwise

where r(X) ∈ [0, 1] is the rejector trained using the loss function + procedure in Mozannar and
Sontag (2020) and deferral is equivalent to Γλ(X) = ∅. (See Appendix for training details). Next, we
define the risk functions that satisfy the above aforementioned requirements:

R1(λ1) = P (Γλ(X) = ∅|h(X) ̸= Y, Y ∈ G) (8)
R2(λ1, λ2) = P (Y /∈ Γλ(X)|Γλ(X) ̸= ∅, Y ∈ G) (9)

The equivalent empirical risks are:

R̂1(λ1) =
1∑N

j=1 Ir(Xj)≥λ1,Yj∈G

N∑
i=1

Ih(Xi )̸=Yi
Ir(Xi)≥λ1,Yi∈G (10)

R̂2(λ1, λ2) =
1∑N

j=1 Ir(Xj)≤λ1,Yj∈G

N∑
i=1

IYi /∈Γλ(Xi)
Ir(Xi)≤λ1,Yi∈G (11)

Here, λ1 is the threshold for deferral, i.e. whenever the model’s prediction for the deferral class
π⊥(X) ∈ [0, 1] ≥ λ1 we defer. λ2 is the threshold for including any label in the set. We first tune λ1

using the RCPS procedure to find the smallest λ1 such that:

P (R1(λ1) ≤ γ1) ≥ 1− δ (12)

Then, we fix λ1 and tune λ2 using RCPS such that

P (R2(λ1, λ2) ≤ γ2) ≥ 1− δ (13)

We then train the deferral policy on all 4 experts. During test time, we perform 1000 random
splits of the calibration and validation dataset and determine the expert and model risk for each
split. For each expert, we set the level of risk control as the corresponding misclassification rate,
i.e. γ1 ∈ {0.05, 0.1, 0.2, 0.3}. The distribution of these risks is shown in the violin plot in Figure 3.
For each expert, we are able to achieve precise control of the expected misclassification rate. The
probability mass above the desired risk level is very small - we found this to be smaller than δ for
the values tested, demonstrating that we satisfied the guarantee in Equation 12. Note that in general,
we were not able to achieve precise control for γ1 when it is much lower than the expert’s error rate
(for smaller risks, the trivial solution found by the scheme is to defer no examples). This is likely
due to inherent limitations of the deferral policy - because it is trained on finite, noisy data, it cannot
always accurately gauge which examples an expert will be correct on. However, on the non deferred
examples, we obtain precise control of the false negative rate (i.e. the probability the true label is not
in the set) for labels G = [5, 6, 7]. This guarantee is independent of the expert we defer examples to.

Takeaway: We can use the RCPS procedure to simultaneously obtain statistical guarantees on the
false negative rate of the model and the accuracy of the expert. This is more likely to be useful when
labels are not too rare to divide responsibilities.
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Figure 2: Illustration of dual risk control on risky labels over N = 1000 calibration-test dataset splits
(left: Expert Misclassification Rate, right: FNR for instances where the extremist assaulted civilians
with a deadly weapon). We want there to be at most δ = 0.1 probability of the risk being greater than
the desired risk level highlighted in the plots.

Table 1: Some Flagged and Non-Flagged Individuals
Individual

ID Feature 1 Feature 2 Feature 3 Feature 4 Predictive
Set Flag

9411 Participated
in extremist dialogue

Far-right
Islamist

Evidence of
Mental Illness

Previously committed
violent crimes [6,7] Yes

1669 Primarily radicalised
via the internet White supremacist No Evidence of

Mental Illness
Had a friend who

committed violent crimes [6,7] Yes

4150 Had friends who
influenced radicalisation

Environmentalist /
Animal Rights Activist

No Evidence of
Mental Illness

Never committed
any crime [0,1,2] No

5 Recommending Dangerous Individuals for Profiling

We now focus on risk control purely from the perspective of the model - we want the model to
be able to recommend and prioritise intervention for individuals who are likely to carry out large
scale attacks in the future. In this case, they are grouped under the most dangerous label: 7. As
these individuals will be rare, we now ask the question: To what extent can a risk-control scheme
provide useful information for intervention as the rarity of the dangerous label increases? It can be
impractical to provide simultaneous risk control for the expert and the model in these situations as
the labels are too rare to divide predictive responsibilities.

Instead, we now assume that the human expert has a budget β which they can expend on intervention,
profiling, and monitoring of potentially dangerous individuals. The unit cost of an intervention is C.
A model acting within the expert’s budget parameters needs to flag a limited number of individuals
for monitoring whilst ensuring that the false negative rate is acceptably low. This is different from
deferring examples as the model is now actively providing set valued predictions on each example.
To investigate this, we use a generative model G : L → X which takes Gaussian noise from the
latent space L as input and generates a new data point in the form of a feature matrix that arises
from the same distribution as all high-risk individuals seen in the training data for the model. We
generate increasing numbers of such synthetic datapoints, add them to the existing training set of
all examples, and train our set valued predictor on the new training set. We now generate predictive
sets that control the FNR for label 7 with γ2 = 0.05 and δ = 0.1. In this case, the risk function
is R(λ) = P (Y /∈ Γλ(X)|Y = 7). Then, we choose the ⌊ β

C ⌋ examples for intervention in the
following manner:

• Smallest set: We choose the ⌊ β
C ⌋ examples with the smallest predictive set size. Of these,

we intervene when the set contains either 5, 6, or 7.

• Sets with the highest average label

• Most probable label: We intervene when the most probable label is 5, 6 or 7.

• Random Allocation of Labels
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Figure 3: (Left) Budget β = 50, cost C = 1. (Middle) Budget β = 250, cost C = 1. (Right) Budget
β = 1000, cost C = 1. Risk controlling predictive sets were constructed with risk γ = 0.05 and
δ = 0.1

For each strategy, we measure the FNR and FPR, defined in Equations 6 and 7 respectively. Because
we are employing ordinal risk control, we are assured of small predictive sets that contain a dangerous
label with high probability. These examples can then be shown to the end user alongside the predictive
set and an indication that they should be flagged for further review. Some examples of flagged
individuals are shown in Table 1.

From Figure 3, we note the following:

• For lower budgets, compared to other methods, selecting examples with predictive sets
containing high average labels provides the best FPR and FNR with regards to intervention /
monitoring of dangerous individuals.

• However, there is not much difference between random allocation and high average label
allocation when we intervene on a large number of examples (i.e. with a high budget). This
makes sense because after allocating individuals most likely to be dangerous, there are fewer
such individuals in the remaining test pool, leading to higher FPRs and FNRs.

6 Conclusion and Future Work

In this study, we explored an application of risk controlling methods in predicting whether radicalised
individuals will go on to commit violent acts. We explore risk control for Human-AI teams by
considering two scenarios:

• The model defers some examples to an underlying human expert, for example, law enforce-
ment. In this situation, we apply risk controlling procedures developed by Angelopoulos et
al. (2021) and Bates et al. (2020) to simultaneously control for the expert misclassification
rate and the model’s misclassification rate of dangerous individuals. The level of controllable
risk of the expert depends on the underlying deferral policy and the number of examples
deferred. Future work could explore other deferral policies such as those in Okati, De, and
Gomez-Rodriguez (2021)

• In an alternate scenario, the model doesn’t abstain from predictions. However, we enforce a
resource constraint wherein only a limited number of individuals can be further monitored,
profiled, and interventionist policies applied when necessary. For this situation, we explore
4 different heuristics for allocating the examples based on their predictive set size. We find
that intervening on examples with the highest average label in the predictive set outperforms
other baselines such as random allocation, most probable label allocation, and smallest set
based allocation, i.e. it achieves a lower false positive and false negative rate of dangerous
individuals on allocated examples. We leave exploration of more rigorous allocation methods
for future work.
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Ultimately, human-AI collaboration in all its forms is of utmost importance in safety-critical domains
like criminal justice. Providing predictive sets as a risk control strategy allows the downstream
decision maker to better interpret the uncertainty associated with the model. We hope this paper
promotes future work on better allocation policies for intervention, control of other risk functions
that humans may find useful, and other applications where risk control can be used to quantify and
mitigate high risk events.
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A Pre-Processing of the PIRUS Dataset

We observed the following characteristics of the PIRUS dataset

• The dataset contains noisy entries with missing features. To deal with this issue, we replaced
all instances of missing feature j with the average feature value found across the dataset.

• The dataset is unlabelled, prompting the need to generate synthetic labels for further analysis.
We do so using the procedure outlined in Table 2. As the labels are generated using select
features, in the event that one of the relevant features is missing for an instance, we remove
that instance from the dataset. This was done for 20 out of 2226 datapoints.

• For each instance, the dataset contains timestamps reflecting various events such as the
approximate date of exposure to radical ideologies, and date of religious conversion (if
applicable). We converted dates to UNIX timestamps - which represent seconds passed since
00:00:00 UTC, Jan 1970.

• The dataset contains features of different scales. To counteract this, we performed feature
normalization, i.e. for the jth feature of the ith instance, we replaced the feature value by:

x̂ij =
xij − µ̂j

σ̂j
µ̂j =

1

N

N∑
i=1

xij σ̂2
j =

1

N

N∑
i=1

(xij − µj)
2 (14)

for all features.

Figure 4: PIRUS Dataset Label Distribution
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Table 2: The criterion used for generating labels from 3 features found in the PIRUS dataset. We
place high emphasis on severity of crimes already committed as we consider them to be a meaningful
indicator of future risk of violence. However, future research could consider alternate methods of
label generation

Label Plot Extent (1-5) Criminal Severity (0-10) Anticipated Fatalities
7 5 10 Greater than 20
6 5 10 Greater than 1
5 5 10 None
4 < 5 10 Any
3 Any 8/9 Any
2 Any 5-7 Any
1 Any 3/4 Any
0 Any 0-2 Any

After pre-processing and feature generation, we trained a simple Multilayer Perceptron on Google
Colab with learning rate η = 0.005 on the dataset for 30 epochs. We used the loss function in
Mozannar and Sontag (2020) to train the classifier over an augmented label space with deferral as an
additional class.

Figure 5: Class conditional coverage on the PIRUS dataset provided by marginal CP using the method
in Sadinle, Lei, and Wasserman (2016) (left: 1− α = 0.95, right: 1− α = 0.9). CP undercovers the
most dangerous label relative to the desired level as coverage is only guaranteed in expectation. A
better alternative is to provide rigorous, more general risk control guarantees on dangerous labels.

B Proofs

Corollary B.0.1. We can control for the misclassification rate of the human at any desired level and
any other risk function simultaneously with high probability, i.e.

P (P (h(X) ̸= Y |r(X) = 1) ≤ α1) ≥ 1− δ (15)

P (R(λ) = E[L(Y,Γλ(X))|r(X) = 0] ≤ α2) ≥ 1− δ (16)

for any α1, α2, δ

Proof. We draw inspiration from the Learn Then Test (LTT) procedure in Angelopoulos et al. (2021)
for Out-Of-Distribution (OOD) detection. This is a generalisation of RCPS in that it is designed to
control for risks that are not necessarily monotonic with respect to the threshold parameter λ. Here,
the equivalent OOD example would be one the expert is correct on, and we would defer this example.
Thus, we mark an example where the model defers as OOD. We want to defer some examples while
controlling for the risk of the model deferring an example the expert makes a mistake on. This is
equivalent to the risk of marking an example as OOD when it is actually in distribution, i.e. a false
positive in a sense. Define the risk functions

R1(λ1) = P (Γλ(X) = ∅|h(X) ̸= Y ) (17)

R2(λ1, λ2) = P (Y /∈ Γλ(X)|Γλ(X) ̸= ∅) (18)

where deferral is equivalent to outputting an empty set ∅. λ1 is the threshold for deferral, i.e. whenever
r(X) ∈ [0, 1] ≥ λ1 we defer and λ2 is the threshold for including any label in the set (e.g. but not
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limited to the threshold conformity score τcal). That is:

Γλ(X) =

{
∅ r(X) ≥ λ1

{y : τ(X, y) ≥ λ2} otherwise

As above, we calculate UCBs R+
1 and R+

2 for all λ1 and λ2. Then, we choose a λ̂1 ∈ Λ̂1 where
Λ̂1 = {λ ∈ Λ1 : R+

1 (λ
′) ≤ γ1, ∀λ′ > λ} and a λ̂2 ∈ Λ̂2 where Λ̂2 = {λ ∈ Λ2 : R+

2 (λ̂1, λ
′) ≤

γ2, ∀λ′ > λ}. The guarantees in Equations 15 and 16 follow hence. Note that not all values of γ1, γ2,
and δ are controllable in the sense of providing non trivial deferral mechanisms - these may depend on
the performance of the human / deferral policy as well as the sample size provided. For controllable
risks, we may choose a particular λ depending on the deferral budget. For example, if we want to
defer 20% of examples, we may choose an appropriate λ ∈ Λ′ and obtain the same guarantees.

C Risk Control with a Deferral Constraint

While dual risk control is attractive, Angelopoulos et al. (2021) highlight that not all risks can be
controlled at the desired level. This may be, for example, due to finite calibration sample size, inherent
limitations of the expert, suboptimality of the deferral policy, etc. In this section, we investigate how
risk control changes as we change deferral policies and expert types. In particular, we first generate
a synthetic expert which has access to some side features not used in training. These include data
about prior criminal charges, the extent to which any previous attacks were planned, and degree of
preparedness of the criminal who conducted an attack. The synthetic expert with access to these
features has ≈ 89% accuracy on risky deferred test examples. We then train 3 deferral policies using
the procedure in Mozannar and Sontag (2020). Note that we can also use other methods found in
literature, e.g. Wilder, Horvitz, and Kamar (2021); Madras, Pitassi, and Zemel (2018); Okati, De, and
Gomez-Rodriguez (2021).

Figure 6: Comparison between deferral policies and their corresponding empirical risk control levels
for a deferral rate of β ≤ 0.1, δ = 0.1 (left: expert risk R̂1(λ1) - desired level γ1 = 0.1, right: model
risk R̂2(λ1, λ2) - desired level γ2 = 0.05, middle: Distribution of average set sizes of non-deferred
examples over 1000 trials). The controllability of expert misclassification risk and the resulting set
size on non-deferred examples is inherently decided by the type of deferral policy trained.

• Optimal: The policy is trained on synthetically generated expert labels.
• Random: This is a deferral policy that doesn’t learn the expert’s strengths and defers at

random. It is trained using random labels.
• Suboptimal: Here, we use the deferral policy that is trained to defer whenever the expert

errs, i.e. we try and defer whenever the policy thinks the expert is wrong. This is done by
providing inverted expert labels to the policy.

With the set predictor in Equation C, we now control for the deferral rate β in the following manner:
We first generate a set of λ1’s that ensure that the deferral rate is less than β. Out of these, we choose
the λ1 such that the 1− δ UCB of R̂1(λ1) is closest to γ1. This procedure is performed over 1000
random splits of the calibration and validation sets.

From Figure 6, we see that the optimal deferral policy controls for the lowest expert misclassification
rate and is closest to the desired level (γ1 = 0.1). This serves to illustrate that the degree of expert
misclassification risk control is also inherently decided by the optimality of the deferral policy.
Furthermore, risk control on non-deferred examples is independent of the deferral policy used - this
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is because dual risk control essentially combines two independent parameterised risks. Note that we
could also perform a Bayes optimal allocation of examples:

Γλ(X) =

{
∅ r(X) ≥ maxy πy(X)

{y : τ(X, y) ≥ λ2} otherwise

In this case, we might obtain a better expert accuracy (and consequently better risk control) than
determining an appropriate threshold, but we lose fine grained control of the deferral rate - this might
be a constraint in real world problems.

Takeaway: The controllability of expert misclassification risk and the resulting set size on
non-deferred examples inherently depend on the type of deferral policy trained.
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