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Abstract
Research on human-AI teams usually provides ex-
perts with a single label, which ignores the uncer-
tainty in a model’s recommendation. Conformal
prediction (CP) is a well established line of research
that focuses on building a theoretically grounded,
calibrated prediction set, which may contain mul-
tiple labels. We explore how such prediction sets
impact expert decision-making in human-AI teams.
Our evaluation on human subjects finds that set val-
ued predictions positively impact experts. However,
we notice that the predictive sets provided by CP
can be very large, which leads to unhelpful AI assis-
tants. To mitigate this, we introduce D-CP, a method
to perform CP on some examples and defer to ex-
perts. We prove that D-CP can reduce the prediction
set size of non-deferred examples. We show how
D-CP performs in quantitative and in human sub-
ject experiments (n = 120). Our results suggest
that CP prediction sets improve human-AI team per-
formance over showing the top-1 prediction alone,
and that experts find D-CP prediction sets are more
useful than CP prediction sets.

1 Introduction
Human-AI collaboration is of increasing importance. Several
works have shown the benefits of human-AI collaboration in
boosting accuracy, fairness, and compatibility [Madras et al.,
2018; Bansal et al., 2019; Mozannar and Sontag, 2020]. One
form of collaboration in the medical domain is the effect of
AI explanations on team performance [Lundberg et al., 2018],
where team performance improves if model explanations are
provided. Another form of human-AI collaboration develops
techniques for models to defer to an expert. Prior literature
exploring both these forms of collaboration has mainly consid-
ered models which output singular predictions. However, this
does not allow experts to gauge and interpret the predictive
uncertainty of the model, which can prevent deployment in
high risk settings. A solution to this is for the model to display
set valued predictions. We define a set valued model predic-
tion Γ as a mapping from the input space X to the power set
of the label space Y , i.e. Γ : X → 2Y . One way to construct a
set valued predictor is through a technique called Conformal

Figure 1: An AI assistant working alongside an expert can output
one of three things: the most likely label, a set valued prediction with
a predetermined error probability, or a deferral token indicating that
the example should be labelled by the expert. The precise nature
of the AI’s prediction should be dependent on acquired knowledge
of the expert’s capabilities. Generally speaking, because the size of
the predictive set is a reflection of the model’s confidence, deferring
examples on which an expert is more confident than the model would
prevent an expert from using large, incoherent prediction sets.

Prediction (CP) [Vovk et al., 2005]. CP generates a prediction
set that may contain multiple labels, but contains the true label
with a user defined error probability. The goal of CP is to
construct predictive sets that are sufficiently small but have
high probability of containing the true label.

One problem often associated with CP sets is that they can
be quite large, which can limit their usefulness in time and
cost sensitive domains such as medical diagnostics, where
it is crucial to narrow down the list of possible diagnoses.
Previous work such as [Bellotti, 2021] and [Stutz et al., 2022]
have devised surrogate loss functions for minimizing set sizes
whilst maintaining coverage guarantees. [Angelopoulos et al.,
2020] regularize the low scores of unlikely classes to provide
small, stable sets. However, CP literature in general has given
little consideration given to a) how useful such predictive sets
are in human-AI teams and b) how human expertise could
be leveraged to get smaller predictive sets [Sadinle et al.,
2016; Romano et al., 2020; Angelopoulos and Bates, 2021].
Recently, [Straitouri et al., 2022] explored improving expert
predictions using CP, with a focus on finding the optimal
error tolerance parameter α that benefits the expert. In this
concurrent work, we fix α and use deferral as a mechanism
to provide sets that are smaller and hence more useful to an
expert. Our contributions are the following:
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• Through human subject experiments on CIFAR-100, we
first show that CP sets result in higher levels of reported
trust and utility as compared to Top-1 predictions.

• We empirically demonstrate one limiting aspect of CP
sets: they can be very large for some examples. In order
to mitigate this, we propose combining set valued clas-
sification and learning to defer. Through a toy example,
we show the utility of learning to defer for the predictive
set size of non-deferred examples.

• We then introduce D-CP, a general practical scheme that
learns to defer on some examples and perform conformal
prediction on others. We prove that, under mild condi-
tions, the set size associated with non-deferred examples
will be smaller than that of the original dataset.

• Through further human subject experiments on the
CIFAR-100 dataset, we discover two benefits of D-CP:
smaller predictive sets and improved team performance.
We find that D-CP leads to higher reported utility and
expert accuracy compared to showing only CP sets.

2 Related Work
2.1 Conformal Prediction
There is growing interest in conformal prediction [Vovk
et al., 2005] as a method of rigorous uncertainty quantifi-
cation. Given a test example Xtest and its (hidden) true
label Ytest, this method allows the user to construct sets
Γ(Xtest) that control for the binary risk, i.e. the error prob-
ability α = P (Ytest /∈ Γ(Xtest)). This is done by per-
forming a statistical test for each label in order to decide
whether the label should be present in the set. In particu-
lar, we define a conformity score τ(Xtest, y) : X × Y → R
that determines how different example (Xtest, y) is from al-
ready observed data {(Xi, Yi)}ni=1. This is a design choice
and several papers explore different choices of conformity
functions [Sadinle et al., 2016; Angelopoulos et al., 2020;
Romano et al., 2020]. To include label y in a predictive set,
we require that the conformity score τ(Xtest, y) is at least
α-common with respect to conformity scores on previously
observed data, i.e. Quantile(τ(Xtest, y), {τ(Xi, Yi)}) ≥ α.

This is equivalent to learning a threshold conformity score
for including labels in a set. Defining the threshold as τcal =
Quantile(α, {τ(Xi, Yi)}), we require τ(Xtest, y) ≥ τcal to
include the label y in the predictive set for Xtest. The con-
formal set is therefore defined as: Γ(Xtest, τcal) = {y :
τ(Xtest, y) ≥ τcal}. In this paper, we employ a computation-
ally efficient scheme called Inductive Conformal Prediction
(ICP) [Papadopoulos, 2008]. This requires an additional cali-
bration dataset Dcal = {(Xi, Yi)}ni=1 drawn from the same
distribution as training and validation sets. After training a
classifier on a training dataset, we can use this calibration
dataset to choose the α Quantile threshold τcal.

None of the works that have previously studied CP [Sadinle
et al., 2016; Angelopoulos et al., 2020; Romano et al., 2020;
Stutz et al., 2022] involved experts in the loop or even consid-
ered the utility of prediction sets generated in the context of
human-AI teams.

2.2 Learning to Defer
Many works have studied the idea of learning a model that
adapts to an underlying expert. One approach is to learn
a rejector and a classifier, wherein, given a cost of defer-
ring c, one learns a binary classifier that rejects whenever
it is less than 1 − c confident [Bartlett and Wegkamp, 2008;
Cortes et al., 2016]. For multi-class problems, [Mozannar
and Sontag, 2020] learn a model that predicts the true label
whenever the expert is wrong and defers otherwise. Similarly,
[Okati et al., 2021] develop a method for exact triage under
multiple expert annotations and prove its optimality under
conditions where there is expert disagreement. [Wilder et
al., 2021], on the other hand, develop a decision theoretic
approach, training 3 probabilistic models representing the AI,
expert, and joint human-AI to maximize utility. However, all
these approaches only examine settings where the AI makes
point predictions whereas we aim to defer some examples and
provide principled, calibrated prediction sets on others.

3 Are Prediction Sets better for Human-AI
teams than Top-1 Predictions?

Our first study focuses on establishing the value of set valued
predictions. For our experiments, we focus on one particu-
lar CP scheme called Regularised Adaptive Prediction Sets
(RAPS) [Angelopoulos et al., 2020]. We recruit 30 partici-
pants on Prolific, paying them at a rate of £10 per hour pro-
rated, and divide them into 2 equal groups. The first group is
shown 18 images from the CIFAR-100 dataset alongside the
model’s most probable prediction (Top-1). The second group
is shown the same images but alongside a RAPS prediction
set with error rate α = 0.1. To understand the effect of set
valued predictions on examples of varying difficulty, we divide
the CIFAR-100 test dataset into 3 difficulty quantiles, where
difficulty is defined as the entropy of the model predictive
distribution. We select 6 images from each difficulty quantile.
For each quantile, we show 2 images whose Top-1 prediction
is incorrect but whose RAPS set contains the true label. This
is consistent with the accuracy of the model (≈ 65%) and lets
us determine the effect of set valued predictions on examples
on which the model is almost correct. Given these model
predictions for each image, we ask participants in both groups
to predict the correct class, rate their confidence in their pre-
dictions, and rate how useful they found the model predictions
on that example. At the end of the survey, we ask participants
to rate their overall trust in the model’s predictions. All ratings
are on a scale from 1− 10. We employ preliminary attention
checks by first asking them to classify 3 easy examples, reject-
ing any participants who classify these examples incorrectly.
We evaluate the statistical significance of our results using a
two sample t-test.

Metric Top-1 RAPS p value Effect Size
Accuracy 0.76 ± 0.05 0.76 ± 0.05 0.999 0.000

Reported Utility 5.43 ± 0.69 6.94 ± 0.69 0.003 1.160
Reported Confidence 7.21 ± 0.55 7.88 ± 0.29 0.082 0.674

Reported Trust in Model 5.87 ± 0.81 8.00 ± 0.69 < 0.001 1.487

Table 1: Top-1 vs RAPS: All Examples



Metric Top-1 RAPS p value Effect Size
Accuracy 0.90 ± 0.05 0.87 ± 0.07 0.486 0.273

Reported Utility 6.067 ± 0.94 6.35 ± 1.00 0.438 0.195
Reported Confidence 7.88 ± 0.65 8.82 ± 0.31 0.013 1.019

Table 2: Top-1 vs RAPS: Lowest Difficulty Quantile

Metric Top-1 RAPS p value Effect Size
Accuracy 0.64 ± 0.07 0.66 ± 0.10 0.828 0.068

Reported Utility 5.30 ± 0.75 7.28 ± 0.69 0.001 1.432
Reported Confidence 6.64 ± 0.64 6.96 ± 0.78 0.4888 0.280

Table 3: Top-1 vs RAPS: Highest Difficulty Quantile

From Table 1, we see that Top-1 predictions result in sta-
tistically significant lower levels of trust (p < 0.001) and
perceived utility (p = 0.003) compared to RAPS. However,
both schemes result in similar accuracy and confidence in
predictions. We also see that users find Top-1 and RAPS
predictions equally useful for easy examples (Table 2). This
makes sense because in such cases, the predictive set will be
small and therefore comparable to a Top-1 prediction. How-
ever, users are more confident about their answers when they
observe RAPS predictions. On the other hand, RAPS sets are
perceived to be much more useful on hard examples, where
Top-1 predictions will often be wrong.
Takeaway: While there is seen to be no significant differ-
ence in team accuracy when shown either Top-1 or set-valued
predictions, displaying set-valued predictions in human-AI
teams results in higher reported utility of predictions as well
as higher reported overall trust in the model.

4 Proposed Approach
4.1 The Problem with CP Sets
In our experiments above, we showed users examples where
the set sizes on CIFAR-100 are small enough to be considered
useful. However, this may not always be the case, especially
on tasks with large label spaces. For instance, a standard
WideResNet model trained on CIFAR-100 (≈ 65% accuracy)
with APS conformal prediction yields prediction sets with
greater than 15 labels for 20% of examples. One option to
mitigate this issue is to defer examples with the largest CP
set sizes to an expert. However, this provides no guarantee
that the expert will be able to classify them with sufficient
accuracy. Furthermore, we also lose the finite sample coverage
guarantees provided by contemporary CP methods, i.e. we
cannot ascertain that P (Ytest /∈ Γ(Xtest)) ≤ α.

4.2 Our Scheme
Our scheme, described in Algorithm 1, is centered around two
components: a deferral policy π(x) : X → {0, 1} and a CP
method. The deferral policy is based on our knowledge of the
expert’s strengths either acquired during training or a-priori.
For example, if an expert is better at identifying brain tumors
than our model, our policy should learn to defer those exam-
ples with high probability. Using this black box policy, we first
prune our calibration dataset, removing all examples where
our deferral policy recommends deferral. One could use any
scheme in [Mozannar and Sontag, 2020; Okati et al., 2021;

Wilder et al., 2021] to learn a deferral policy. While Algo-
rithm 1 specifies a deferral policy as an input, for some deferral
methods (such as [Mozannar and Sontag, 2020]), the policy
is trained alongside the model. In others, such as [Okati et
al., 2021], the policy is applied post-hoc. In this paper, we
consider the former deferral policy: the D-CP algorithm for
this is outlined in Algorithm 2 in the Supplementary Mate-
rial. After training a model and a suitable deferral policy, we
perform conformal calibration on this pruned dataset of non-
deferred examples. In this procedure, for any predictive set
Γ(Xtest, τcal) for an example Xtest we can guarantee that:

1− α ≤ P (Y ∈ Γ(Xtest, τcal)|π(Xtest) = 0) (1)

where 1 represents the action of deferral. From [Angelopoulos
et al., 2020], when the conformity scores are known to be
almost surely distinct and continuous, we can also guarantee:

P (Y ∈ Γ(Xtest, τcal)|π(Xtest) = 0) ≤ 1− α+
1

n+ 1
(2)

where n is the size of the non-deferred calibration dataset. Be-
cause the deferral policy π probabilistically decides which
unseen examples to defer, all non-deferred examples can
be thought of as being generated from a data generating
distribution X ∼ p(X|π(X) = 0). Any new test ex-
ample Xtest that is not deferred is therefore independently
drawn from this distribution. Thus, {Xi}ni=1 ∪ {Xtest} ∼
p(X1, ..Xtest|π(X1), ..π(Xtest) = 0) are exchangeable,
thereby satisfying the coverage guarantee in Equation 1.

Figure 2: D-CP: Test Phase given a deferral policy π(X)

Figure 3: D-CP: Training and Calibration Phase

To show the utility of our scheme, a good deferral policy
would guarantee that resulting predictive sets on non-deferred
examples will contain fewer incorrect labels than before. We



Algorithm 1 General D-CP

Input: Classifier mθ(x) ∈ R|Y|, Deferral Policy π(x) ∈
{0, 1}, Training Set D, Expert h(x) ∈ Y , Calibration Set Dcal,
Validation Set Dval, Test Example xtest, Conformity Score
Function τ(X, y), Loss function l(mθ(x), y, h(x))
Parameter: Number of Epochs N , Learning Rate γ, Error
Tolerance α

1: for i ∈ {1, ...N} do
2: for Batch B ∈ D do
3: θ = θ − γE(x,y)∈B[∇θl(mθ(x), y, h(x))]
4: end for
5: end for
6: D′cal = {(X,Y )|π(X) = 0, (X,Y ) ∈ Dcal}
7: τcal = Quantile(α, {τ(Xi, Yi)|(Xi, Yi) ∈ D′cal})
8: if π(Xtest) = 0 then
9: return Γ(Xtest, τcal) = {y|τ(Xtest, y) ≥ τcal}

10: else if π(Xtest) = 1 then
11: Defer to Expert h(Xtest)
12: end if

prove this formally in Theorem 1 in the Supplementary Mate-
rial. While this technically applies to conformity scores τ(x, y)
that are monotonic with respect to softmax probabilities (such
as LAC), our subsequent experiments with other CP methods
such as RAPS and APS suggest that our scheme generalises
well across other classes of conformity score functions.

5 Toy Example
One way to combine conformal prediction and deferral is to
only perform CP on “easy” examples and defer the “hard”
examples. An “easy” example would be one which the model
is confident on and a “hard” example is the converse. This
can lead to smaller sets. To demonstrate the intuition, we
generate equiprobable synthetic data using a Mixture of Gaus-
sians (MoG) model. Each datapoint is generated from one of 4
Gaussians - N (1, 1), N (1,−1), N (−1, 1), and N (−1,−1) -
and we wish to infer class memberships. We first train a multi-
layer perceptron (MLP) on 1000 training samples (not shown)
to infer the decision boundaries. Then, using a held out cali-
bration set, we perform CP with error tolerance α = 5% using
the Least Ambiguous Classifiers (LAC) method [Sadinle et al.,
2016]. In this method, we use the model softmax probabilities
p(y|x) = τ(x, y) as conformity scores. Figure 5 (top) shows a
1-D scatter plot of conformity scores assigned to ground truth
labels in the toy dataset.

Figure 4 shows the resulting test datapoints colored accord-
ing to their true classes with model decision boundaries over-
laid. We see that points closer to the decision boundary have
larger predictive set sizes, reflecting their inherent uncertainty.
If we defer points with conformity scores in the bottom 15th

percentile (naive decision policy) as in Figure 5, the α thresh-
old conformity score will increase. From Figure 5 (Right),
for non-deferred examples, this increases the threshold for
including labels in the set, resulting in more confident sets for
the same error control. However, this naive deferral method,
whilst ensuring small set sizes on the remaining examples,
does not take into account the expertise of the expert involved.

Furthermore, we assumed access to ground truth labels for test
examples, which is not practical. We can engage the expert in
a better manner and approximate the idea of the toy example
by learning a deferral policy which incorporates estimates
of expert ability as well as machine difficulty. This scheme
makes an implicit assumption that the expert is a) either better
than the model on average or b) not necessarily better than the
model on average, but is proficient in classifying certain sub-
groups of examples. In these situations, our deferral policy is
more likely to defer examples that a model is less confident on.
Given these assumptions about an expert, Theorem 1 ensures
lower predictive set sizes.

Figure 4: (Left): Toy dataset from Figure 1 comprising of datapoints
belonging to one of 4 classes along with overlaid model decision
boundaries. The size of the datapoints indicates their predictive
set sizes. (Right) We defer the β = 0.15 proportion of examples
with the lowest ground truth conformity scores. Doing so increases
the value of the 5th percentile conformity score of the remaining
examples in Figure 1, causing CP set sizes of examples to be smaller.
Note that we have not changed the model in this process.

Figure 5: (Left): 1-D scatter plot of all ground truth conformity scores
τ = p(Yi|Xi) on a toy calibration dataset in Figure 2. We assume
an oracle deferral policy that defers β = 15% of examples with
the lowest τ . Both values of τcal maintain 95% coverage on their
respective datasets. (Right): Class probabilities for the test green
starred example. For the predictive set, we include all scores which
are greater than the threshold τcal. Thus, the predictive set {1, 2, 3}
gives 95% coverage for the original dataset. On the non-deferred
dataset, the set {1} gives 95% coverage.

6 Experiments with D-CP
To validate our approach, we perform experiments with syn-
thetic expert labels on the CIFAR-100 dataset and real expert



labels on the CIFAR-10H [Peterson et al., 2019] dataset1. Be-
cause the CIFAR-10H dataset contains expert labels only on
the CIFAR-10H validation set, we employ the approach in
[Mozannar and Sontag, 2020] and train a binary classifier to
predict examples where the expert is correct. We then provide
synthetic expert labels Ih(x)=y or Ih(x)6=y for examples the
training set according to whether the expert errs on them. Note
that, in line with the assumption made in this paper, the experts
chosen in this setting are, on average, better than the model
trained. We consider 2 scenarios:

• We have access to a single expert’s annotations. For
CIFAR-100, we generate a synthetic expert with 70%
accuracy. To motivate this choice, we ran a control study
where we asked 20 participants to classify 15 randomly
chosen CIFAR-100 examples. We found participants had
average accuracy of 69% with a standard error of≈ 2.5%.
For the CIFAR-10H dataset, we randomly sample a label
from the predictive distribution provided.

• We have access to multiple expert annotations. This is an
ensemble of the above experts, and the predicted class is
chosen through majority voting for both datasets. For the
CIFAR-100, we generate predictions from 5 experts.

Our deferral policy is based on the loss function in [Mozan-
nar and Sontag, 2020]. We train a WideResNet [Zagoruyko
and Komodakis, 2016] classifier mθ(x) : X → Y∪ ⊥ on
CIFAR-10H and CIFAR-100 for 5 and 10 epochs respectively
using the learning rate schedule in [Mozannar and Sontag,
2020]. ⊥ represents the action of deferral to an expert h(x).
We modify the loss function used in this work as below:
LCE(h, x, y,mθ) = −(Ih(x) 6=y + αIh(x)=y) logmθ(x)y

− βIh(x)=y logmθ(x)⊥

where we set α = 1 and vary the β ∈ [0, 1] penalty term to
control the deferral rate. The policy π(x) is therefore:

π(x) =

{
1 argmaxy∈Y∪⊥mθ(x)y = |Y∪ ⊥ |
0 otherwise

To compute conformity scores, we renormalize the softmax
probabilities for examples where π(x) = 0 using Bayes’ rule:

p(y|x, π(x) = 0, θ) =
p(y 6= |Y∪ ⊥ ||x, y, θ)p(y|x, θ)

p(y 6= |Y∪ ⊥ ||x, θ)

=
p(y|x, θ)

p(y 6= |Y∪ ⊥ ||x, θ)

Figure 7: Cumulative CP and D-CP Set Size Distribution of Non-
Deferred Examples in the CIFAR-100 dataset (α = 0.05, deferral
rate b = 0.2, Single Expert).

1Our code is hosted at https://github.com/cambridge-mlg/d-cp.

In our experiments, we did not notice any statistically sig-
nificant difference in accuracy of non-deferred examples or
predictive set sizes when employing multiple experts as op-
posed to a singular expert, at least in the deferral rate regimes
tested. Because we are performing experiments in the low
deferral rate regime, it is likely that the deferral scheme defers
similar examples to both expert types - examples the model
is sure the expert(s) will get right. Thus, in Table 4, the clas-
sifier accuracy and predictive set sizes are representative for
both singular and multiple experts. However, we benefit from
increased system accuracy by using ensemble voting across
multiple experts. In addition, per Table 4 and Figure 7, our
scheme ensures smaller set sizes across all conformal methods
and deferral rates tested. Increasing the deferral rate reduces
the predictive set size. In Figure 6, the model and expert have
a mutually beneficial relationship: the model provides smaller
predictive sets on examples the expert is more uncertain on
and defers examples it is less certain of than an expert.

Takeaway: D-CP provides smaller predictive set sizes on
non-deferred examples for the same level of coverage. For the
policy in [Mozannar and Sontag, 2020], while the number of
experts does not make a difference in the resulting predictive
set size of non-deferred examples, having more experts predict
through majority voting improves the system accuracy.

7 Evaluation on Experts
Our second human subject experiment focuses on establishing
the value of smaller set predictions and learning to defer - the
2 promises of D-CP. We choose another set of 15 examples
from the CIFAR-100 test set for which we generate RAPS
prediction sets with error rate α = 0.1 and D-RAPS prediction
sets with deferral rate 0.2 and error rate α = 0.1. We select
12 non-deferred examples at random wherein the D-RAPS
predictive set is smaller than the RAPS predictive set, but
the ground truth labels are contained in both sets. Lastly, we
choose the remaining 3 deferred examples where the model is
underconfident, i.e. the ground truth label is not in the RAPS
set. This aims to establish the value of deferral in situations
where the model may provide misleading predictions. We ask
participants the same questions as in Section 3 and follow a
similar recruitment procedure as in Section 3 (60 participants
total, 2 groups, reward of £10 per hour prorated).

Metric D-RAPS RAPS p value Effect Size
Accuracy 0.76 ± 0.08 0.67 ± 0.05 0.002 0.832

Reported Utility 7.93 ± 0.39 6.32 ± 0.60 < 0.001 1.138
Reported Confidence 7.31 ± 0.29 7.28 ± 0.29 0.862 0.046

Reported Trust in Model 8.00 ± 0.45 6.87 ± 0.61 0.006 0.754

Table 5: D-RAPS vs RAPS: All Examples

Metric D-RAPS RAPS p value Effect Size
Accuracy 0.88 ± 0.05 0.81 ± 0.04 0.058 0.508

Reported Utility 7.93 ± 0.39 6.19 ± 0.62 < 0.001 1.211
Reported Confidence 7.78 ± 0.33 7.31 ± 0.34 0.059 0.507

Table 6: D-RAPS vs RAPS: Non-Deferred Examples

Tables 5 and 6 suggest that there is a statistically signifi-
cant increase in expert accuracy when the D-CP scheme is

https://github.com/cambridge-mlg/d-cp


Predictive Set Size of Non-Deferred Examples
Deferral
Rate b

Classifier
Accuracy

System Accuracy
(Single Expert)

System Accuracy
(Multiple Experts) RAPS APS LAC

0 65.18± 0.30 65.18± 0.30 65.18± 0.30 3.75± 0.06 4.61± 0.08 3.26± 0.03
0.05 68.39± 0.31 68.04± 0.32 68.91± 0.33 3.22± 0.05 4.16± 0.06 2.48± 0.03
0.10 69.92± 0.24 69.95± 0.31 71.53± 0.35 2.81± 0.05 4.05± 0.06 2.13± 0.04
0.20 72.98± 0.30 72.25± 0.30 78.99± 0.40 2.36± 0.07 2.93± 0.10 2.07± 0.03

Predictive Set Size of Non-Deferred Examples
Deferral
Rate b

Classifier
Accuracy

System Accuracy
(Single Expert)

System Accuracy
(Multiple Experts) RAPS APS LAC

0 82.02± 0.55 82.02± 0.55 82.02± 0.55 1.91± 0.03 2.83± 0.05 2.47± 0.12
0.05 84.41± 0.69 84.31± 0.65 84.64± 0.30 1.87± 0.08 2.76± 0.10 2.25± 0.08
0.10 86.12± 0.67 86.53± 0.68 88.12± 0.61 1.73± 0.08 2.56± 0.07 1.90± 0.15
0.20 88.97± 0.50 89.43± 0.64 91.46± 0.32 1.49± 0.06 2.13± 0.11 1.51± 0.09

Table 4: D-CP Predictive Set Size, System Accuracy, and Classifier Accuracy on the CIFAR-100 (top) and CIFAR-10H (bottom) datasets for
the deferral scheme in [Mozannar and Sontag, 2020] and the 3 CP schemes (α = 0.1, 5 Trials, 95% CI). Even in the low deferral rate regime,
we not only obtain smaller set sizes across all CP schemes tested, but also benefit from increased human-AI system accuracy. While having
multiple experts does not further improve the predictive set size for this deferral policy, we benefit from further improved system accuracy.

Figure 6: D-RAPS vs RAPS on some examples in the CIFAR-10H dataset (α = 0.05, b = 0.2). Deferring on examples where experts are
more confident than the model provides smaller sets on examples where the model is more confident than the expert. Thus, we leverage the
strengths of both the model and the expert.

employed, with borderline significance on non-deferred ex-
amples. Even though participants did not perform as well on
deferred examples in general, we noticed that their accuracy
was still higher than when they were shown CP sets, which
contained misleading labels. Equally interestingly, on exam-
ples where both RAPS and D-RAPS sets contain the ground
truth label (i.e. the non-deferred examples), the perceived util-
ity of D-CP sets is higher (p < 0.001). As D-RAPS sets are
smaller, this shows that, for the same confidence level, smaller
set sizes are more useful to experts and therefore a preferred
choice for human-AI teams. Table 5 also shows a statistically
significant difference in reported trust in the model between
D-RAPS and RAPS. These are important considerations for
real world human-AI teams. We provide further results in the
Supplementary Material which show that participants display
a bias towards towards incorrect predictions shown in larger
CP sets, warranting caution when deploying models with large
CP sets in human-AI teams.
Takeaway: There are statistically significant improvements
increases in reported utility, trust, and accuracy in the model
when the D-CP scheme is employed.

8 Conclusion
In this paper, we explored the importance of set valued predic-
tions for human-AI teams. We first showed experts find CP
predictive sets more useful than Top-1 predictions. However,
CP set sizes can be very large for some examples, especially in
large label spaces. Thus, we motivate the need for combining
the ideas of learning to defer and set valued predictions. We
introduce D-CP, a general practical scheme that defers some
examples and performs CP on others. Empirical and theo-
retical evidence shows that the scheme provides smaller set
sizes on non-deferred examples for any CP method compared
to performing CP on all examples. The scheme allows the
model and expert to have a mutually beneficial relationship
by leveraging the expert and the model’s respective strengths.
Our human subject experiments show that, compared to CP,
experts find the smaller D-CP predictive sets more useful, the
model more trustworthy, and are more accurate. We hope that
this informs a) future research on improved deferral policies
that consider the predictive uncertainty of the model and b)
larger scale human evaluations that uncover specific, desirable
properties of a predictive set.
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A Proofs
Theorem 1. Consider a deferral policy π(x) : X →
{0, 1} and a classification model mθ(x) : X → Y act-
ing on a dataset D = {(X1, Y1), ...(Xn, Yn)}. Define
some conformity measure τ(x, y) such that if p(ŷ|x̂) ≥
p(y|x) then τ(x̂, ŷ) ≥ τ(x, y) for any softmax probabil-
ities p(ŷ|x̂), p(y|x), labels ŷ, y ∈ Y , and inputs x̂, x ∈
X . If the expected loss on non-deferred examples is lower
than the original loss, i.e. E(x,y)|π(x)=0[L(y,mθ(x))] ≤
E(x,y)[L(y,mθ(x))], then the average conformal predictive
set of non-deferred examples will contain fewer incorrect la-
bels on average.

Proof. Because the expected loss on non-deferred examples
is lower, we know that:

E(x,y)|π(x)=0[p(Y = y|x)] ≥ E(x,y)[p(Y = y|x)] (3)

From our definition of the conformity measure τ(x, y) above:

E(x,y)|π(x)=0[τ(Y = y, x)] ≥ E(x,y)[τ(Y = y, x)] (4)

for any ground truth label y associated with an example x.
Therefore,

E(x,y)|π(x)=0[

K∑
i=1
i 6=y

p(Y = i|x)] ≤ E(x,y)[

K∑
i=1
i 6=y

p(Y = i|x)]

⇒ E(x,y)|π(x)=0[

K∑
i=1
i 6=y

τ(Y = i, x)] ≤ E(x,y)[

K∑
i=1
i 6=y

τ(Y = i, x)]

Because E(x,y)|π(x)=0[τ(Y = y, x)] ≥ E(x,y)[τ(Y = y, x)],
τ ′α = Quantile(α, {τ(Y = y, x)|(x, y) ∈ D, π(x) = 0}) ≥
τα = Quantile(α, {τ(Y = y, x)|(x, y) ∈ D}) for any user
defined error tolerance α ∈ [0, 1]. Thus:

E(x,y)|π(x)=0

 K∑
i=1
i6=y

Iτ(Y=i,x)≥τ′α

 ≤ E(x,y)|π(x)=0

 K∑
i=1
i6=y

Iτ(Y=i,x)≥τα



≤ E(x,y)

 K∑
i=1
i6=y

Iτ(Y=i,x)≥τα


This implies:

E(x,y)|π(x)=0[|{ŷ|τ(x, ŷ) ≥ τ ′α, ŷ 6= y}|] ≤
E(x,y)[|{ŷ|τ(x, ŷ) ≥ τα, ŷ 6= y}|]

B Coverage Guarantees and Statistical
Efficiency of D-CP

For an Inductive Conformal Predictior (ICP), the coverage is
defined as:

C =
1

nval

nval∑
i=1

IYi∈Γ(Xi,τcal)|{(Xi,Yi)}ni=1
(5)

for a validation dataset of size nval and a calibration dataset
of size n. While conformal prediction provides theoretical
guarantees of the form in Equations 1 and 2, due to the finite
number of samples and variations in test and training data
distributions, ICP does not result in exact coverage in practice.
[Tibshirani et al., 2019] and [Lei et al., 2016] report that
the coverage of conformal intervals is highly concentrated
around 1 − α. Because D-CP ensures that samples in the
calibration and validation sets remain exchangeable, we get
similar coverage distributions for D-CP as we would for any
CP method. This is illustrated in Figure 8.

Figure 8: (top) Coverage Distribution on Non-Deferred Test Exam-
ples for Different D-CP Schemes: Deferral Rate β ≈ 0.2.
(bottom) Coverage Distribution on All Test Examples for Different
CP Schemes. For both D-CP and CP, α = 0.05, Dataset = CIFAR-
10H, Number of Trials = 200, n = 8000, nval = 8000

However, due to the reduced number of finite samples, we
would expect a slight increase in the variance of the coverage
of the estimator. This is evident in Figure 8. [Angelopou-
los and Bates, 2021] show that the standard deviation of the



obtained coverage in Equation 5 can be expressed as:

Std(C) =

√
(n+ 1− l)(n+ nval + 1)l

nval(n+ 1)2(n+ 2)
= O

(
1√

min(n, nval)

)
(6)

where n and nval is the size of the calibration and test dataset
respectively and l = b(n+1)αc. Given a deferral rate of β, the
effective sizes of n and ncal reduce by a factor of 1− β for D-
CP, increasing the standard deviation of the average coverage
by a factor of 1√

1−β . The benefits of smaller predictive sets
and human-AI complementarity therefore come at the price
of a reduction of statistical efficiency. However, this is not a
problem in practice as long as the model doesn’t defer a large
proportion of examples to an expert. [Angelopoulos and Bates,
2021] claim that a calibration size of 1000 will be sufficient for
most applications employing CP methods. For D-CP, given a
model with, say a reasonable 20% deferral rate, the calibration
dataset need only be around 25% larger than before to provide
empirical coverage with the same variance as conventional CP
methods.

C D-CP Algorithm for Experiments in
Section 7

Below, we present one instance of the D-CP algorithm that
was used for experiments in this paper. Note that while the
exact algorithm depends on the deferral policy being trained
(e.g. using approaches in [Okati et al., 2021] or [Wilder et al.,
2021]), the main workflow followed is illustrated in Section 4
in the paper.

Algorithm 2 D-CP using the deferral policy in [Mozannar and
Sontag, 2020]
Input: Classifier mθ(x) : X → Y∪ ⊥, Training Set D,
Expert h(x) ∈ Y , Calibration Set Dcal, Validation Set Dval,
Error Tolerance α, Number of Epochs N , Learning Rate γ,
Test Example xtest

1: for i ∈ {1, ...N} do
2: for Batch B ∈ D do
3: θ = θ − γE(x,y)∈B[∇θl(mθ(x), y, h(x))]
4: . Loss function in [Mozannar and Sontag, 2020]
5: end for
6: end for
7: D′cal = ∅
8: for (x, y) ∈ Dcal do
9: if argmaxmθ(x) 6= |Y|+ 1 then

10: m′θ = softmax(mθ) . Deferral Policy
11: m′θ =

m′θ[1:|Y|]
1−m′θ[|Y|+1] . Bayes’ Rule

12: D′cal = D′cal ∪ (x, y,m′θ(x))
13: end if
14: end for
15: τcal = α threshold conformity score learnt from conformal

calibration on D′cal
16: if argmaxmθ(xtest) 6= |Y|+ 1 then
17: Output predictive set:
18: Γ(xtest) = {y|y ∈ Y, τ(xtest, y) ≥ τcal}
19: else
20: Defer to expert h(xtest)
21: end if

D Additional Results from Human Subject
Experiments

D.1 Bias of Experts Towards Incorrect Model
Predictions

[Bondi et al., 2022] established for binary classifiers that
model predictions influence expert decisions and that display-
ing incorrect predictions can cause experts to err in judgement
when compared to purely deferring predictions. We report
similar findings for set valued predictions in this paper. To this
end, we define the bias towards incorrect predictions as the
proportion of examples where an incorrect prediction made by
an expert is found in the predictive set output by the model av-
eraged across all subjects. That is, given experts h, examples
x, the associated label y(x), and the CP set Γ(x):

Bias = Eh,x
[
Ih(x)∈Γ(x)Ih(x)6=y(x)

]
(7)

Metric D-RAPS RAPS
Non-Deferred Examples

RAPS
Deferred Examples

Bias 0.063 ± 0.035 0.189 ± 0.046 0.933 ± 0.069

Table 7: D-RAPS vs RAPS: Bias towards incorrect or misleading
labels

Comparing just the non-deferred examples (where both
D-RAPS and RAPS sets contain the true label) we see that
experts are much more biased towards incorrect predictions
in RAPS sets than in D-RAPS sets. This is a consequence of
RAPS sets containing more incorrect labels, which presents
more scope for ambiguity. Another interesting observation
is that on examples deferred by D-RAPS (whose RAPS sets
contain only incorrect labels), expert are much more reliant
on RAPS predictions. These findings warrant caution when
deploying models with only CP wrappers in human-AI teams,
as large, incoherent sets in critical settings can result in costly
mistakes when expert bias their decisions heavily on model
predictions.

D.2 Further Analysis of RAPS vs D-RAPS

Metric RAPS D-RAPS N p-value Effect Size Nmin

Accuracy (All) 0.67 0.76 30 0.003 0.87 22
Accuracy (Easy) 0.87 0.83 30 0.310 0.27 218

Accuracy (Difficult) 0.55 0.67 30 < 0.001 1.04 16

Table 8: RAPS vs D-RAPS Accuracy on All Examples. Nmin is
the minimum sample size for each group needed for p ≤ 0.05 with
power 1− β = 0.8 and N is the experimental sample size of each
group.

Table 8 shows a power analysis on the results of the D-RAPS
vs RAPS experiments. We divide the 15 images chosen into 3
difficulty groups - where difficulty is defined as the entropy of
the model predictive distribution - and evaluate the statistical
significance of the accuracy on the easiest and most difficult
groups. It is seen that the accuracy increases the most on
examples the model found difficult, which are by definition
the most likely to be deferred. On the other hand, there is no
increase in accuracy of easy examples.



D.3 Human Subject Experiment Questions
In order to aid reproducibility, we also show excerpts from the
survey questionnaire for the RAPS vs Top-1 and D-RAPS vs
RAPS experiments.

• Figures 9 and 10 are questions posed to participants
across all experiments

• Figures 11 and 12 are questions posed to participants in
the RAPS vs D-RAPS experiment.

• Figures 13 and 14 are questions posed to participants in
the RAPS vs Top-1 experiment.

Figure 9: After each non-deferred example, we asked users these
questions

Figure 10: Additionally, at the end of the survey, we asked users to
rate their trust in the model on a scale from 1− 10



Figure 11: We first show an example of an image where both RAPS and D-RAPS sets contain the true label, but the D-RAPS set is smaller than
the RAPS set. The true label for this image is: Cockroach. 15 participants are shown the RAPS set (left image) and 15 different participants
are shown the D-RAPS set (right image)

Figure 12: We also have images where the RAPS set provides incorrect and potentially misleading labels (such as ’willow tree’) but where a
D-RAPS set defers. The true label for this image is: Forest

Figure 13: While evaluating Top-1 predictions (left) in comparison to RAPS (right), we choose some examples where Top-1 predictions are
wrong but where the true label is contained in the RAPS set. We have 2 such images for each difficulty quantile for a total of 6 images. In this
image, the true label is: Pear.



Figure 14: For the remaining 9 images, the Top-1 predictions are correct and the RAPS sets contain the true label. Here, for example, the true
label is: Train.
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